SILVER--SODIUM SUBSTITUTION IN FERROELASTIC-FERROELECTRIC OXYFLUORIDES WITH THE CHIOLITE-TYPE

J. Grannec*, A. Yacoubi and J. Ravez

Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 33405 Talence Cédex (France)

New silver oxyfluorides with a chiolite-type structure have been prepared by solid state reactions in sealed gold tubes from AgF and TiOF₂ or WO₃ : Ag₅Ti₃O₃F₁₁ and Ag₅W₃O₉F₅. Both crystallize with the tetragonal prototype symmetry 47mm.

A great number of studies have been previously performed on ferroelectric oxyfluorides containing sodium (e.g. $Na_5W_3O_6F_5$, Ferroelectrics, 38,777,1981). These compounds crystallize with a monoclinic distortion. The disappearance of the domain structure and the change of crystalline system (monoclinic + tetragonal) at the transition temperature T_c implies also ferroelastic properties for T < T. The influence of silver-sodium substitution on ferroelas-

The influence of silver-sodium substitution on ferroelastic-ferroelectric properties has been studied in the system containing tungsten. Two solid solutions have been isolated : Na₅ Ag W₃O₉F₅ ($0 \le x \le 1$; $2 \le x \le 5$). The evolution of the cell parameters has been related to the size of the monovalent cation.For compositions close to Na₅W₃O₉F₅, the phase is still ferroelectric with a decrease of the spontaneous strain and of the transition temperature from e =67x10⁻⁴, T_{c}=800\pm10K (x=0) to e = 49x10⁻⁴, T_{c}=680\pm20K (x=1). The temperature of the two other transitions which occur in the ferroelectric region decreases simultaneously. For high silver content (x > 2), the monoclinic distortion appears only in the temperature range 4 K \le T \le 80 K.

The following table gives symmetry, spontaneous strain ${\rm e}_{\rm c}$ and transition temperature T for the four titanium and tungsten oxyfluorides.

Symmetry	10 ⁴ хе (300 к) ^s	т (300 к)	Refer.	
Na5 ^{Ti303F} 11	monocl.	65	760	*
Ag ₅ Ti ₃ O ₃ F ₁₁	tetrag.	0		*
Na ₅ W ₃ O ₉ F ₅	monocl.	67	800	
Ag ₅ W ₃ O ₉ F ₅	tetrag.	0		*

Present work